Protein Domain : Tetracyclin repressor-like, C-terminal domain 34 IPR041483

Type  Domain
Description  TetR family regulators are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity [ ]. The TetR proteins identified in overm ultiple genera of bacteria and archaea share a common helix-turn-helix (HTH) structure in their DNA-binding domain. However, TetR proteins can work in different ways: they can bind a target operator directly to exert their effect (e.g. TetR binds Tet(A) gene to repress it in the absence of tetracycline), or they can be involved in complex regulatory cascades in which the TetR protein can either be modulated by another regulator or TetR can trigger the cellular response []. TetR regulates the expression of the membrane-associated tetracycline resistance protein, TetA, which exports the tetracycline antibiotic out of the cell before it can attach to the ribosomes and inhibit protein synthesis []. TetR blocks transcription from the genes encoding both TetA and TetR in the absence of antibiotic. The C-terminal domain is multi-helical and is interlocked in the homodimer with the helix-turn-helix (HTH) DNA-binding domain []. This entry represents the C-terminal domain present in putative TetR family transcriptional regulators found in bacteria. It is a member of a Pfam clam for the the TetR superfamily.
Short Name  TetR_C_34

0 Child Features

0 Gene Families

0 Genes

0 Ontology Annotations

0 Parent Features

0 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom