This superfamily represents a structural domain with a core structure consisting of a 3-helical closed bundle with a left-handed twist, in an up-and-down arrangement. This structural motif occurs as subdomain 2 within FERM domains, as well as in acyl-CoA-binding proteins. The FERM domain (band F ezrin-radixin-moesin homology domains) has such a structure, acting as a common membrane-binding module involved in localising proteins to the plasma membrane [
]. Proteins containing FERM include cytoskeletal proteins such as erythrocyte membrane protein 4.1R, talin, and the ezrin-radixin-moesin protein family, as well as several protein tyrosine kinases and phosphatases, and the neurofibromatosis 2 tumour suppressor protein merlin. The ezrin-radixin-moesin protein family function is to crosslink the actin filaments of cytoskeletal structures to the plasma membrane.In addition, acyl-CoA-binding protein (ACBP) contains a domain with a similar 3-helical bundle structure. ACBP plays an important role in fatty acid metabolism, maintaining a pool of fatty acyl-CoA molecules in the cell [
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].The ribosomal protein L13e is widely found in vertebrates [
], Drosophila melanogaster, plants, yeast, amongst others.
Era is an essential G-protein in Escherichia coli identified originally as a homologue protein to Ras (E. coli Ras-like protein). It binds to GTP/GDP and contains a low intrinsic GTPase activity. Its function remains elusive, although it may be associated with cell division, energy metabolism, and cell-cycle check point. The protein has recently been shown to specifically bind to 16S rRNA and the 30S ribosomal subunit [
]. Involvement of Era in protein synthesis is suggested by the fact that Era depletionresults in the translation defect both in vitro and in vivo. A Type 2 KH domain is found near the C terminus.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].L16 is an essential protein in the large ribosomal subunit of bacteria, mitochondria, and chloroplasts. Large subunits that lack L16 are defective in peptidyl transferase activity, peptidyl-tRNA hydrolysis activity, association with the 30S subunit, binding of aminoacyl-tRNA and interaction with antibiotics. L16 is required for the function of elongation factor P (EF-P), a protein involved in peptide bond synthesis through the stimulation of peptidyl transferase activity by the ribosome. Mutations in L16 and the adjoining bases of 23S rRNA confer antibiotic resistance in bacteria, suggesting a role for L16 in the formation of the antibiotic binding site. The GTPase RbgA (YlqF) is essential for the assembly of the large subunit, and it is believed to regulate the incorporation of L16. L10e is the archaeal and eukaryotic cytosolic homologue of bacterial L16. L16 and L10e exhibit structural differences at the N terminus [
,
,
,
,
,
,
,
].This entry represents a structural domain with an alpha/β-hammerhead fold, where the β-hammerhead motif is similar to that in barrel-sandwich hybrids. Domains of this structure can be found in ribosomal proteins L10e and L16.
This entry represents a family of proteins known variously as DiGeorge syndrome critical region 14 (DGCR14), DiGeorge syndrome protein I (DGSI), ES2 and ESS-2. In yeast the homologue is known as stress response protein Bis1.
Proteins in this family consist of approximately 500 residues with alternating regions of low complexity and conservation where the domain similarities are strong. They contain two predicted coiled-coil regions. ESS-2 has been shown to be involved in pre-mRNA splicing []. Similarly DGCR14 has been shown to be a noncore component of the spliceosome C complex [].
RecX is a putative bacterial regulatory protein [
]. The gene encoding RecX is found downstream of recA, and it is suggested that the RecX protein might be regulator of RecA activity by interaction with the RecA protein or filament [].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].The S25 ribosomal protein is a component of the 40S ribosomal subunit.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein L1 is the largest protein from the large ribosomal subunit. The L1 protein contains two domains: 2-layer alpha/beta domain and a 3-layer alpha/beta domain (interrupts the first domain). In Escherichia coli, L1 is known to bind to the 23S rRNA. It belongs to a family of ribosomal proteins which, on the basis of sequence similarities [,
], groups:Eubacterial L1Algal and plant chloroplast L1Cyanelle L1Archaebacterial L1Vertebrate L10AYeast SSM1
This entry represents a structural domain common to several L1 ribosomal proteins, and related proteins. It consists of one alpha/beta subdomain interrupted by another alpha/beta subdomain.Ribosomal protein L1 is the largest protein from the large ribosomal subunit. In Escherichia coli, L1 is known to bind to the 23S rRNA. It belongs to a family of ribosomal proteins which, on the basis of sequence similarities [
,
], groups:Eubacterial L1Algal and plant chloroplast L1Cyanelle L1Archaebacterial L1Vertebrate L10AYeast L1-A and L1-B
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Rsm22 has been identified as a mitochondrial small ribosomal subunit [
] and is a methyltransferase. In Schizosaccharomyces pombe (Fission yeast), Rsm22 is tandemly fused to Cox11 (a factor required for copper insertion into cytochrome oxidase) and the two proteins are proteolytically cleaved after import into the mitochondria []. This entry consists of mitochondrial Rsm22 and homologous sequences from bacteria.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].This family includes a number of eukaryotic and archaebacterial ribosomal proteins; mammalian S19, Drosophila S19, Ascaris lumbricoides S19g (ALEP-1) and S19s, yeast YS16
(RP55A and RP55B), Aspergillus S16 and Haloarcula marismortui HS12.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].L27 is a protein from the large (50S) subunit; it is essential for ribosome function, but its exact role is unclear. It belongs to a family of ribosomal proteins, examples of which are found in bacteria, chloroplasts of plants and red algae and the mitochondria of fungi (e.g. MRP7 from yeast mitochondria). The schematic relationship between these groups of proteins is shown below.
Bacterial L27 Nxxxxxxxxx
Algal L27 NxxxxxxxxxPlant L27 tttttNxxxxxxxxxxxxx
Yeast MRP7 tttNxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx't': transit peptide.
'N': N-terminal of mature protein.
p34 is a protein involved in membrane trafficking. It is known to interact with both alpha and gamma adaptin [
]. It has been speculated that p34 may play a chaperone role such as preventing the soluble adaptors from co-assembling with soluble clathrin, or helping to remove the adaptors from the coated vesicle. It may also aid in the recruitment of soluble adaptors onto the membrane [].
This entry represents checkpoint protein Rad24 from budding yeasts and its homologue, Rad17 from other organisms. In Saccharomyces cerevisiae, Rad24 forms a complex with replication factor C (RFC) proteins, including Rfc2, Rfc3, Rfc4, and Rfc5. When DNA damage is detected, the Rad24-RFC complex loads Rad17-Mec3-Ddc1 complex onto chromatin and activates DNA damage checkpoint, which then leads to cell cycle arrest and DNA repair [
]. The Rad24-RFC complex is involved in both the mitotic and meiotic checkpoints []. Besides checkpoint activation, Rad24 is also involved in double-strand break ends processing, DNA repair and telomere maintenance [,
,
,
]. In human, the comparable DNA damage checkpoint components, Rad17 and the Rad1-Rad9-Hus1 (9-1-1) complex, play similar roles in DNA damage surveillance and checkpoint activation as their counter partners (Rad24, Rad17-Mec3-Ddc1) in budding yeast. Rad17 participates in the recruitment of the 9-1-1 complex onto chromatin. Besides checkpoint activation, Rad17 may also serve as a sensor of DNA replication progression, and may be involved in homologous recombination [
]. Overexpression of Rad17 has been associated with human breast and colon cancers [,
]. It's worth noting that the name, Rad17, has been used for different proteins in budding yeast and other organisms. In this entry, Rad17, is the homologue of the budding yeast Rad24 and has no homology with budding yeast Rad17
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein L33 is one of the proteins from the large ribosomal subunit. In Escherichia coli, L33 has been shown to be on the surface of 50S subunit. L33 belongs to a family of ribosomal proteins which, on the basis of sequence similarities [
,
], groups:Eubacterial L33.Algal and plant chloroplast L33.Cyanelle L33.L33 is a small protein of 49 to 66 amino-acid residues.
This entry represents mammalian centromere protein C (CENP-C), budding yeast Mif2 and fission yeast centromere protein 3 (cnp3) [
]. They play an important role in assembly of the kinectochore, which is the microtubule-attachment sites that allow chromosome segregation on the mitotic spindle. It binds to the centromere and interacts with histones [,
]. In budding yeast, it is phosphorylated by Aurora kinase Ipl1 []. In humans, CENP-C is a component of the CENPA-NAC complex, which is at least composed of CENPA, CENPC, CENPH, CENPM, CENPN, CENPT and MLF1IP/CENPU [,
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein S13 is one of the proteins from the small ribosomal subunit. In Escherichia coli, S13 is known to be involved in binding fMet-tRNA and, hence, in the initiation of translation. It is a basic protein of 115 to 177 amino-acid residues that contains thee helices and a β-hairpin in the core of the protein, forming a helix-two turns-helix (H2TH) motif, and a non-globular C-terminal extension. This family of ribosomal proteins is present in prokaryotes, eukaryotes and archaea [
].This entry also includes the 40S ribosomal protein S18 which is located at the top of the head of the 40S subunit where it contacts several helices of the 18S rRNA [
].
This entry represent the transmembrane protein 18 (TMEM18). In humans, TMEM18 is a transcription repressor and a sequence-specific ssDNA and dsDNA binding protein, with preference for GCT end CTG repeats [
]. It enhances the tropism of neural stem cells for glioma cells [].
This representative of this family is the STIG1 cysteine rich protein. The tobacco stigma-specific gene, STIG1 is developmentally regulated and expressed specifically in the stigmatic secretory zone. Pistils of transgenic STIG1-barnase tobacco plants undergo normal development, but lack the stigmatic secretory zone and are female sterile. Pollen grains are unable to penetrate the surface of the ablated pistils. Application of stigmatic exudate from wild-type pistils to the ablated surface increases the efficiency of pollen tube germination and growth and restores the capacity of pollen tubes to penetrate the style [
]. The function of STIG1 is unknown.
Bacterial high affinity transport systems are involved in active transport of solutes across the cytoplasmic membrane. The protein components of these traffic systems include one or two transmembrane protein components, one or two membrane-associated ATP-binding proteins and a high affinity periplasmic solute-binding protein. In Gram-positive bacteria, which are surrounded by a single membrane and therefore have no periplasmic region, the equivalent proteins are bound to the membrane via an N-terminal lipid anchor. These homologue proteins do not play an integral role in the transport process per se, but probably serve as receptors to trigger or initiate translocation of the solute through the membrane by binding to external sites of the integral membrane proteins of the efflux system. In addition at least some solute-binding proteins function in the initiation of sensory transduction pathways.The bacterial Spermidine/putrescine-binding periplasmic protein (PotD) is involved in
the polyamine transport system. It is required for the activity of the bacterialperiplasmic transport system of putrescine and spermidine [
,
]. This protein has two domains connected throughtwo β-strands, which form a hinge at the bottom of the central cleft, and this hinge lies
and one short peptide segment [].Similar proteins with specificities for putrecine and spermidine are also included in this family, such as Putrescine-binding periplasmic protein PotF from Escherichia coli, more specifically involved in putrescine uptake [
,
,
] and Spermidine-binding periplasmic protein SpuE from Pseudomonas aeruginosa [] respectively.Putrescine/cadaverine-binding protein and Putrescine/agmatine-binding protein from P. aeruginosa also belong to this entry [
].
TMEM214 is a critical mediator, in cooperation with CASP4, of endoplasmic reticulum-stress induced apoptosis. It is required or the activation of CASP4 following endoplasmic reticulum stress [
].
This family consists of proteins found in eukaryotes, including the human protein C10orf57 (also known as transmembrane protein 254). The exact function of this protein is still unknown; however, it is thought to be an integral membrane protein. The family also includes some longer proteins that possess an N-terminal dehydrogenase domain (
).
Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Atg proteins coordinate the formation of autophagosomes. The pre-autophagosomal structure contains at least five Atg proteins: Atg1p, Atg2p, Atg5p, Aut7p/Atg8p and Atg16p, found in the vacuole [
,
]. The C-terminal glycine of Atg12p is conjugated to a lysine residue of Atg5p via an isopeptide bond. During autophagy, cytoplasmic components are enclosed in autophagosomes and delivered to lysosomes/vacuoles. Autophagy protein 16 (Atg16) has been shown to bind to Atg5 and is required for the function of the Atg12p-Atg5p conjugate [
]. Autophagy protein 5 (Atg5) is directly required for the import of aminopeptidase I via the cytoplasm-to-vacuole targeting pathway [].Atg9 plays a direct role in the formation of the cytoplasm to vacuole targeting and autophagic vesicles. It colocalizes with Atg2 at the expanding edge of the isolation membrane and acts as a lipid scramblase that translocates phospholipids delivered by Atg2 from the cytoplasmic to the luminal leaflet [
,
].
The TATA-box binding protein (TBP) is required for the initiation of transcription by RNA polymerases I, II and III, from promoters with or without a TATA box [
,
]. TBP associates with a host of factors, including the general transcription factors SL1, TFIIA, -B, -D, -E, and -H, to form huge multi-subunit pre-initiation complexes on the core promoter. Through its association with different transcription factors, TBP can initiate transcription from different RNA polymerases. There are several related TBPs, including TBP-like (TBPL) proteins []. TBP binds directly to the TATA box promoter element, where it nucleates polymerase assembly, thus defining the transcription start site.The C-terminal core of TBP (~180 residues) is highly conserved and contains two 77-amino acid repeats that produce a saddle-shaped structure that straddles the DNA; this region binds to the TATA box and interacts with transcription factors and regulatory proteins [
]. By contrast, the N-terminal region varies in both length and sequence.
Transmembrane protein 135 (TMEM135) is a multi-pass membrane protein. It may be involved in fat storage and longevity regulation in Caenorhabditis elegans [
].
Rab proteins, a family of small Ras-related GTP-binding proteins, are involved in regulation of
intracellular vesicle trafficking []. Rab GDP dissociation inhibitor (GDI) forms a
soluble complex with Rab proteins, thereby preventing exchange of GDP for GTP. Rab GDI exists in several isoforms, and belongs to the TCD/MRS6 family of GDP dissociation inhibitors.
The crystal structure of the bovine alpha-isoform of Rab GDI has been
determined to a resolution of 1.81A []. The protein is composed of twomain structural units: a large complex multi-sheet domain I, and a smaller
α-helical domain II.The structural organisation of domain I is closely related to FAD-containing
monooxygenases and oxidases []. Conserved regions common to GDI and thechoroideraemia gene product, which delivers Rab to catalytic subunits of
Rab geranylgeranyltransferase II, are clustered on one face of the domain[
]. The two most conserved regions form a compact structure at the apex ofthe molecule; site-directed mutagenesis has shown these regions to play a
critical role in the binding of Rab proteins [].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].Ribosomal protein L32p is part of the 50S ribosomal subunit. This family is found in both prokaryotes and eukaryotes. Ribosomal protein L32 of yeast binds to and regulates the splicing and the translation of the transcript of its own gene [
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].A number of eukaryotic, bacterial and archaebacterial ribosomal proteins can be grouped on the basis of sequence similarities. One of these families consists of:Mammalian L30 [
].Leishmania major L30.Yeast YL32 [
].Bacillus subtilis proteins YbxF and YlxQ [
].Thermococcus celer L30 [
].A probable ribosomal protein (ORF 1) from Methanococcus vannielii [
].A probable ribosomal protein (ORF 104) from Sulfolobus acidocaldarius [
].These proteins, of the L30e family, have 82 to 114 amino-acid residues.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein L9 is one of the proteins from the large ribosomal subunit.
In Escherichia coli, L9 is known to bind directly to the 23S rRNA. It belongsto a family of ribosomal proteins grouped on the basis of sequence similarities [
].The crystal structure of Bacillus stearothermophilus L9 shows the 149-residue protein comprises two globular domains connected by a rigid linker [
]. Each domain contains an rRNA binding site, and the protein functions as astructural protein in the large subunit of the ribosome. The C-terminal domain consists of two loops, an α-helix and a three-stranded mixed
parallel, anti-parallel β-sheet packed against the central α-helix. The long central α-helix is exposed to solvent in the middle and participates in thehydrophobic cores of the two domains at both ends.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein L29e forms part of the 60S ribosomal subunit [
]. This family is found in eukaryotes. There are there are 20 to 22 copies of the L29 gene in Rattus norvegicus (Rat). Rat L29 is related to yeast ribosomal protein YL43 [].
Prkrip1, also known as protein C114, is a double-stranded RNA-binding protein [
]. It consists of a fully extended N-terminal loop (residues 51-75) and an 18-turn alpha helix (residues 76-142). It directly links the catalytic centre with the U2 snRNP at the periphery of the spliceosome [].
This domain is found in mitochondrial proteins, including FAM210A (and its homologues) and B, which contain a transmembrane peptide [
,
,
]. Its function is not clear. FAM210A, a protein essential in maintaining skeletal muscle structure and strength [], interacts with mitochondrial translation elongation factor EF-Tu and promotes mitochondrial protein expression. In FAM210A, this domain is responsible for binding EF-Tu []. FAM210B plays a role in erythroid differentiation and is involved in cell proliferation and tumor cell growth suppression [,
]. This domain is also present in the uncharacterised protein C106.07c from fission yeast and putative N-terminal acetyltransferase 2 from Baker's yeast.
Small nuclear ribonucleoproteins (snRNPs) are components of major and minor spliceosomes that play an important role in the splicing of cellular pre-mRNAs. snRNPs contain a common core, composed of seven Sm proteins bound to snRNA. Five small snRNPs (U1, U2, U4 and U5) share the Sm heptamer ring composed of SmB/B', SmD1/2/3, SmE, SmF, and SmG (also known as snRNP-G), while U6 snRNP has a
heptamer ring consist of seven Sm-like (Lsm) proteins: Lsm2, Lsm3, Lsm4, Lsm5, Lsm6, Lsm7 and Lsm8 []. This entry includes the snRNP heptamer ring components SmF (small nuclear ribonucleoprotein F), Lsm6 and LSM36B from
Arabidopsis[
].
This family consists of glycine rich proteins, including Arabidopsis AtGRP3 (At2g05520). AtGRP3 interacts with the receptor-like kinase AtWAK1 and functions in root size determination during development and in Aluminum stress [
].
This family constitutes the major, conserved, portion of PRCC proteins. In humans, this family interacts with MAD2B, the mitotic checkpoint protein [
,
]. In Schizosaccharomyces pombe this protein is part of the Cwf-complex that is known to be involved in pre-mRNA splicing [].
This entry represents a group of arabinogalactan proteins (AGPs) from plants, and includes AGP16, AGP20, AGP22 and AGP41 [
]. These proteoglycans have been implicated in various processes associated with plant growth and development, including embryogenesis and cell proliferation
The methyltransferase TYW3 (tRNA-yW- synthesising protein 3) has been identified in yeast to be involved in wybutosine (yW) biosynthesis [
]. yW is a complexly modified guanosine residue that contains a tricyclic base and is found at the 3'-position adjacent the anticodon of phenylalanine tRNA. TYW3 is an N-4 methylase that methylates yW-86 to yield yW-72 in an Ado-Met-dependent manner [].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].On the basis of sequence similarities the following prokaryotic and eukaryotic ribosomal proteins can be grouped:
Bacterial 50S ribosomal protein L10;Archaebacterial acidic ribosomal protein P0 homologue (L10E);Eukaryotic 60S ribosomal protein P0 (L10E).This entry represents the ribosomal protein L10 family.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein S4 is one of the proteins from the small ribosomal subunit. In Escherichia coli, S4 is known to bind directly to 16S ribosomal RNA. Mutations in S4 have been shown to increase translational error frequencies [
].S4 is a protein of 171 to 205 amino-acid residues (except for NAM9, which is much larger). The crystal structure of a bacterial S4 protein revealed a two domain molecule. The first domain is composed of four helices in the known structure. The second domain is in the middle of the first one and displays some structural homology with the ETS DNA binding domain [
].This family includes the small ribosomal subunits S4 and S9.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].A number of eukaryotic and archaebacterial large subunit ribosomal proteins can be grouped on the basis of sequence similarities. These proteins have 87 to 128 amino-acid residues. This family consists of:
Yeast L34Archaeal L31 [
]
Plants L31Mammalian L31 [
]
Ribosomal protein L31e, which is present in archaea and eukaryotes, binds the 23S rRNA and is one of six protein components encircling the polypeptide exit tunnel. It is a component of the eukaryotic 60S (large) ribosomal subunit, and the archaeal 50S (large) ribosomal subunit [
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
].
This entry represents the retinoblastoma protein family, including retinoblastoma-associated protein (RB, also known as pRb, RB, p1051), retinoblastoma-like protein 1 (RBL1, also known as p107) and retinoblastoma-like protein 2 (RBL2, also known as RB2 or p130). Members of this family contain a conserved domain named the 'pocket' that interacts with the LXCXE motif found in viral proteins, such as SV40 large T antigen []. Therefore, this family is also called the pocket protein family.In humans, RB is a tumour suppressor linked to several major cancers [
]. RB forms complexes with E2Fs and represses gene expression by recruiting chromatin remodeling factors, such as histone deacetylases (HDACs) to E2F-responsive promoters [,
]. This interaction regulates genes necessary for DNA replication and cell cycle. Phosphorylation of RB family by CDK and cyclin complexes leads to release of the repressor complex and enables E2F-dependent gene expression []. Apart from E2Fs, RB also interacts with other transcription factors that govern cell differentiation [,
]. RBL1 and RBL2 are the components of the DREAM complex, which represses cell cycle-dependent genes in quiescent cells and plays a role in the cell cycle-dependent activation of G2/M genes [
,
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].L35 is a basic protein of 60 to 70 amino-acid residues from the large subunit [
]. Like many basic polypeptides, L35 completely inhibits ornithine decarboxylase when present unbound in the cell, but the inhibitory function is abolished upon its incorporation into ribosomes []. It belongs to a family of ribosomal proteins, including L35 from bacteria, plant chloroplast, red algae chloroplasts and cyanelles. In plants it is a nuclear encoded gene product, which suggests a chloroplast-to-nucleus relocation during the evolution of higher plants [].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein L22e forms part of the 60S ribosomal subunit [
] found in eukaryotes. Rattus norvegicus (Rat) L22 is related to ribosomal proteins from other eukaryotes and is identical in amino acid sequence to human EAP, the EBER 1 (Epstein-Barr virus (strain GD1) (HHV-4) (Human herpesvirus 4) encoded RNA) associated protein [].
Members of the NSCC2 family have been sequenced from various yeast, fungal and animals species including Saccharomyces cerevisiae, Drosophila melanogaster and Homo sapiens. These proteins are the Sec62 proteins, believed to be associated with the Sec61 and Sec63 constituents of the general protein secretary systems of yeast microsomes. They are also the non-selective cation (NS) channels of the mammalian cytoplasmic membrane. The yeast Sec62 protein has been shown to be essential for cell growth. The mammalian NS channel proteins have been implicated in platelet derived growth factor(PGDF) dependent single channel current in fibroblasts. These channels are essentially closed in serum deprived tissue-culture cells and are specifically opened by exposure to PDGF. These channels are reported to exhibit equal selectivity for Na+, K+ and Cs+ with low permeability to Ca2+, and no permeability to anions.
This small acidic protein is found in 30S ribosomal subunit of cyanobacteria and plant plastids. In plants it has been named plastid-specific ribosomal protein 3 (PSRP-3), and in cyanobacteria it is named Ycf65. Plastid-specific ribosomal proteins may mediate the effects of nuclear factors on plastid translation. The acidic PSRPs are thought to contribute to protein-protein interactions in the 30S subunit, and are not thought to bind RNA [
].
This family contains a number of eukaryotic Insulin-induced proteins (INSIG-1 and INSIG-2) approximately 200 residues long. INSIG-1 and INSIG-2 are found in the endoplasmic reticulum and bind the sterol-sensing domain of SREBP cleavage-activating protein (SCAP), preventing it from escorting SREBPs to the Golgi. Their combined action permits feedback regulation of cholesterol synthesis over a wide range of sterol concentrations [
,
].The INSIG family also includes NSG1 and NSG2 (INSIG homologues 1 and 2) [
].
Ribosomal protein L21 is one of the proteins from the large ribosomal subunit. In Escherichia coli, L21 is known to bind to the 23S rRNA in the presence of L20. It belongs to a family of ribosomal proteins which, on the basis of sequence similarities, groups:
Bacterial L21.Marchantia polymorpha chloroplast L21.Cyanelle L21.Plant chloroplast L21 (nuclear-encoded).Bacterial L21 is a protein of about 100 amino-acid residues, the mature form of the spinach chloroplast L21 has 200 residues.
Single-stranded DNA-binding protein (SSB) plays an important role in DNA replication, recombination and repair. It binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism [
,
,
,
].
This family of membrane proteins are conserved from plants to humans, including CAND2 and CAND8 from Arabidopsis. CAND2 and CAND8 are predicted G-protein coupled receptors [
]. CAND2 plays a role in plants and microbes interactions [] and acts as a phytomelatonin receptor that regulates stomatal closure through the Galpha subunit-mediated H2O2 production and Ca2 flux dynamics [].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Evidence suggests that, in prokaryotes, the peptidyl transferase reaction is performed by the large subunit 23S rRNA, whereas proteins probably have a greater role in eukaryotic ribosomes. Most of the proteins lie close to, or on the surface of, the 30S subunit, arranged peripherally around the rRNA [
]. The small subunit ribosomal proteins can be categorised as primary binding proteins, which bind directly and independently to 16S rRNA; secondary binding proteins, which display no specific affinity for 16S rRNA, but its assembly is contingent upon the presence of one or more primary binding proteins; and tertiary binding proteins, which require the presence of one or more secondary binding proteins and sometimes other tertiary binding proteins.The small ribosomal subunit protein S18 is known to be involved in binding the aminoacyl-tRNA complex in Escherichia coli [
], and appears to be situated at the tRNA A-site. Experimental evidence has revealed that S18 is well exposed on the surface of the E. coli ribosome, and is a secondary rRNA binding protein []. S18 belongs to a family of ribosomal proteins [] that includes: eubacterial S18; metazoan mitochondrial S18, algal and plant chloroplast S18; and cyanelle S18.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].This family contains the S24e ribosomal proteins from eukaryotes and archaebacteria. These proteins have 101 to 148 amino acids.
Autophagy is a degradative transport pathway that delivers cytosolic proteins to the lysosome (vacuole) [
] and is induced by starvation []. Cytosolic proteins appear inside the vacuole enclosed in autophagic vesicles. Autophagy significantly differs from other transport pathways by using double membrane layered transport intermediates, called autophagosomes [,
]. The breakdown of vesicular transport intermediates is a unique feature of autophagy []. Autophagy can also function in the elimination of invading bacteria and antigens [].There are more than 25 AuTophaGy-related (ATG) genes that are essential for autophagy, although it is still not known how the autophagosome is made. Atg9 is a potential membrane carrier to deliver lipids that are used to form the vesicle. Atg27 is another transmembrane protein, and is a cycling protein [
].It acts as an effector of VPS34 phosphatidylinositol 3-phosphate kinase signalling and regulates the cytoplasm to vacuole transport (Cvt) vesicle formation. It is also required for autophagy-dependent cycling of ATG9.
This is a family of plant proteins induced by water deficit stress (WDS) [
], or abscisic acid (ABA) stress and ripening []. The Ip3 cDNA clone is expressed at high levels in the roots, and is induced by ABA under WDS.
TMEM147 is a component of the Nicalin-NOMO protein complex, which catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the beta-amyloid precursor protein and Notch [
].
This entry represents centromere protein O (CENP-O) and its homologues in yeasts, Mcm21 and Mal2. In humans, centromere protein O (CENP-O) is a component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation [
]. CENP-O mediates the attachment of the centromere to the mitotic spindle by forming essential interactions between the microtubule-associated outer kinetochore proteins and the centromere-associated inner kinetochore proteins. CENP-O modulates the kinetochore-bound levels of NDC80 complex []. It may be involved in incorporation of newly synthesized CENP-A into centromeres via its interaction with the CENPA-NAC complex [
].In Saccharomyces cerevisiae, Mcm21 is a component of the kinetochore sub-complex COMA (Ctf19p, Okp1p, Mcm21p, Ame1p), which links kinetochore subunits with subunits bound to microtubules during kinetochore assembly [
,
]. In Schizosaccharomyces pombe, Mal2 is a component of the Sim4 complex, which is required for loading the DASH complex onto the kinetochore via interaction with Dad1 [
]. It plays a role in the maintenance of core chromatin structure and kinetochore function [].
Kti12 associates with Elongator complex, a six-subunit histone acetytransferase complex that functions with the elongating form of RNA polymerase II during transcription [
]. It is not a structural subunit but may play a regulatory role in Elongator function []. It has been shown that Kti12 is associated with chromatin throughout the genome, even in non-transcribed regions and in the absence of Elongator []. It is required for an early step in synthesis of 5-methoxycarbonylmethyl (mcm5) and 5-carbamoylmethyl (ncm5) groups present on uridines at the wobble position in tRNA [].L-seryl-tRNA(Sec) kinase (PSTK) specifically phosphorylates seryl-tRNA(Sec) to O-phosphoseryl-tRNA(Sec), an activated intermediate for selenocysteine biosynthesis [
].
This family was originally identified in Drosophila and called mago nashi, it is a strict maternal effect, grandchildless-like, gene [
]. The protein is an integral member of the exon junction complex (EJC). The EJC is a multiprotein complex that is deposited on spliced mRNAs after intron removal at a conserved position upstream of the exon-exon junction, and transported to the cytoplasm where it has been shown to influence translation, surveillance, and localization of the spliced mRNA. It consists of four core proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP and is supposed to be a binding platform for more peripherally and transiently associated factors along mRNA travel. Mago and Y14 form a stable heterodimer that stabilizes the complex by inhibiting eIF4AIII's ATPase activity. Mago-Y14 heterodimer has been shown to interact with the cytoplasmic protein PYM, an EJC disassembly factor, and specifically binds to the karyopherin nuclear receptor importin 13 [
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
].The human homologue has been shown to interact with an RNA binding protein, ribonucleoprotein rbm8 (
) [
]. An RNAi knockout of the Caenorhabditis elegans homologue causes masculinization of the germ line (Mog phenotype) hermaphrodites, suggesting it is involved in hermaphrodite germ-line sex determination [] but the protein is also found in hermaphrodites and other organisms without a sexual differentiation.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Evidence suggests that, in prokaryotes, the peptidyl transferase reaction is performed by the large subunit 23S rRNA, whereas proteins probably have a greater role in eukaryotic ribosomes. Most of the proteins lie close to, or on the surface of, the 30S subunit, arranged peripherally around the rRNA [
]. The small subunit ribosomal proteins can be categorised as primary binding proteins, which bind directly and independently to 16S rRNA; secondary binding proteins, which display no specific affinity for 16S rRNA, but its assembly is contingent upon the presence of one or more primary binding proteins; and tertiary binding proteins, which require the presence of one or more secondary binding proteins and sometimes other tertiary binding proteins.The small ribosomal subunit protein S10 consists of about 100 amino acid residues. In Escherichia coli, S10 is involved in binding tRNA to the ribosome, and also operates as a transcriptional elongation factor [
]. Experimental evidence [] has revealed that S10 has virtually no groups exposed on the ribosomal surface, and is one of the "split proteins": these are a discrete group that are selectively removed from 30S subunits under low salt conditions and are required for the formation of activated 30S reconstitution intermediate (RI*) particles. S10 belongs to a family of proteins [
] that includes: bacteria S10; algal chloroplast S10; cyanelle S10; archaebacterial S10; Marchantia polymorpha and Prototheca wickerhamii mitochondrial S10; Arabidopsis thaliana mitochondrial S10 (nuclear encoded); vertebrate S20; plant S20; and yeast URP2.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein L17 is one of the proteins from the large ribosomal subunit. Bacterial L17 is a protein of 120 to 130 amino-acid residues while yeast YmL8 is
twice as large (238 residues). The N-terminal half of YmL8 is colinearwith the sequence of L17 from Escherichia coli.
SelO and its homologues are widespread among most eukaryotic taxa, and are also common in many major bacterial taxa. SelO is a conserved pseudokinase that transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation). It contains a protein kinase fold with ATP flipped in the active site [
]. In eukaryotes, it is a mitochondrial protein that may be involved in redox biology [].
Strawberry notch proteins carry DExD/H-box groups and helicase C-terminal domains. These proteins promote the expression of diverse targets, potentially through interactions with transcriptional activator or repressor complexes [
]. Strawberry notch was first identified in Drosophila where functions downstream of Notch and regulates gene expression during development [,
].Protein FORGETTER 1 (included in this entry) is the A. thaliana orthologue of Strawberry notch [
].
Nucleolar protein 14 (Nop14) is involved in nucleolar processing of pre-18S ribosomal RNA and has a role in the nuclear export of 40S pre-ribosomal subunit to the cytoplasm [
,
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein L16 is one of the proteins from the large ribosomal subunit.
In Escherichia coli, L16 is known to bind directly the 23S rRNA and to belocated at the A site of the peptidyltransferase centre. L16 is a protein
of 133 to 185 amino-acid residues.
This entry includes NDUFAF3, an essential factor for the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I) [], and the Mth938 domain-containing protein []. The crystal structure of NDUFAF3 revealed a 3-layer beta+alpha/beta/alpha topology [].NADH:ubiquinone oxidoreductase (complex I) (
) is a respiratory-chain enzyme that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane (NADH + ubiquinone = NAD+ + ubiquinol) [
]. Complex I is a major source of reactive oxygen species (ROS) that are predominantly formed by electron transfer from FMNH(2). Complex I is found in bacteria, cyanobacteria (as a NADH-plastoquinone oxidoreductase), archaea [], mitochondria, and in the hydrogenosome, a mitochondria-derived organelle. In general, the bacterial complex consists of 14 different subunits, while the mitochondrial complex contains homologues to these subunits in addition to approximately 31 additional proteins [].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].L32 is a protein from the large ribosomal subunit that contains a surface-exposed globular domain and a finger-like projection that extends into the RNA core to stabilize the tertiary structure. L32 does not appear to play a role in forming the A (aminacyl), P (peptidyl) or E (exit) sites of the ribosome, but does interact with 23S rRNA, which has a "kink-turn"secondary structure motif. L32 is overexpressed in human prostate cancer and has been identified as a stably expressed housekeeping gene in macrophages of human chronic obstructive pulmonary disease (COPD) patients. In Schizosaccharomyces pombe, L32 has also been suggested to play a role as a transcriptional regulator in the nucleus. Found in archaea and eukaryotes, this protein is known as L32 in eukaryotes and L32e in archaea [
,
,
,
,
,
,
].
This entry represents a domain found in the OS9 protein, which is a lectin that functions in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) [
]. The sequences of this domainare similar to a region found in the beta-subunit of glucosidase II (), which is also known as protein kinase C substrate 80K-H (PRKCSH).
This group represents the GTP-binding protein EngA that belongs to the GTPase Der subfamily. In Escherichia coli, EngA is involved in ribosome stability and/or biogenesis, as well as cell viability [
]. In Salmonella typhimurium however, EngA binds with higher affinity to GDP than GTP [].
This domain is found at the C terminus of Red protein (
). This and related proteins are thought to be localised to the nucleus, and contain a RED repeat which consists of a number of RE and RD sequence elements [
]. The function of Red protein is unknown, but efficient sequestration to nuclear bodies suggests that its expression may be tightly regulated or that the protein self-aggregates extremely efficiently [].
Pexophagy is an autophagic process consisting of the rapid and selective degradation of peroxisomes. Autophagy-related protein 2 (ATG2) is required for glucose-induced micropexophagy and ethanol-induced macropexophagy in yeast [
,
]. Homologues of this protein have also been described in mammals and plants. Mammalian ATG2 proteins are thought to function both in autophagosome (a structure that enclose the cytoplasmic materials) formation and regulation of lipid droplet morphology and dispersion []. In plants they have a role in programmed cell death, senescence and disease resistance [].
Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process.
Protein kinases fall into three broad classes, characterised with respect to substrate specificity []:Serine/threonine-protein kinasesTyrosine-protein kinasesDual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)Protein kinase function is evolutionarily conserved from Escherichia coli to human [
]. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation []. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [].Eukaryotic protein kinases [
,
,
,
,
] are enzymes that belong to a very extensive family of proteins which share a conserved catalytic core common with both serine/threonine and tyrosine protein kinases. There are a number of conserved regions in the catalytic domain of protein kinases. In the N-terminal extremity of the catalytic domain there is a glycine-rich stretch of residues in the vicinity of a lysine residue, which has been shown to be involved in ATP binding. In the central part of the catalytic domain there is a conserved aspartic acid residue which is important for the catalytic activity of the enzyme [].This entry represents the protein kinase domain containing the catalytic function of protein kinases [
]. This domain is found in serine/threonine-protein kinases, tyrosine-protein kinases and dual specificity protein kinases.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].A number of eukaryotic and archaebacterial ribosomal proteins can be grouped on the basis of sequence similarities. One of these families consists of proteins that have from 220 to 250 amino acids and represents Rps1 (eukaryotic) and Rps3Ae (archaeal and eukaryotic).
This is a family of conserved proteins representing the enzyme responsible for adding O-fucose to EGF (epidermal growth factor-like) repeats. Six highly conserved cysteines are present as well as a DXD-like motif (ERD), conserved in mammals, Drosophila, and Caenorhabditis elegans. Both features are characteristic of several glycosyltransferase families. The enzyme is a membrane-bound protein released by proteolysis and, as for most glycosyltransferases, is strongly activated by manganese [
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].A number of eukaryotic and archaebacterial ribosomal proteins can be grouped
on the basis of sequence similarities []. One of these families consists of:Mammalian L15.Insect L15.Plant L15.Yeast YL10 (L13) (Rp15r).Archaebacterial L15e.These proteins have about 200 amino acid residues.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].A number of eukaryotic and archaeal ribosomal proteins have been grouped
based on sequence similarities []. One of these families, S8e, consists of a number of proteins with either about 220 amino acids (in eukaryotes) or about 125 amino acids (in archaea).
Ribosomal protein L24 is one of the proteins from the large ribosomal subunit. In their mature form, these proteins have 103 to 150 amino-acid residues. Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].
This is a family of integral membrane proteins containing transmembrane helices. This family used to be known as DUF81.The TauE proteins are involved in the transport of anions across the cytoplasmic membrane [
,
] during taurine metabolism as an exporter of sulfoacetate [].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal S2 proteins have been shown to belong to a family that includes 40S ribosomal subunit 40kDa proteins, putative laminin-binding proteins, NAB-1 protein and 29.3kDa protein from Haloarcula marismortui [
,
]. The laminin-receptor proteins are thus predicted to be the eukaryotic homologue of the eubacterial S2 risosomal proteins [].Ribosomal protein S2 (RPS2) are involved in formation of the translation initiation complex, where it might contact the messenger RNA and several components of the ribosome. It has been shown that in Escherichia coli RPS2 is essential for the binding of ribosomal protein S1 to the 30s ribosomal subunit. In humans, most likely in all vertebrates, and perhaps in all metazoans, the protein also functions as the 67kDa laminin receptor (LAMR1 or 67LR), which is formed from a 37kDa precursor, and is overexpressed in many tumors. 67LR is a cell surface receptor which interacts with a variety of ligands, laminin-1 and others. It is assumed that the ligand interactions are mediated via the conserved C terminus, which becomes extracellular as the protein undergoes conformational changes which are not well understood. Specifically, a conserved palindromic motif, LMWWML, may participate in the interactions. 67LR plays essential roles in the adhesion of cells to the basement membrane and subsequent signalling events, and has been linked to several diseases. Some evidence also suggests that the precursor of 67LR, 37LRP is also present in the nucleus in animals, where it appears associated with histones [
,
,
,
,
,
,
,
,
,
,
,
,
,
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein L3 is one of the proteins from the large ribosomal subunit. In Escherichia coli, L3 is known to bind to the 23S rRNA and may participate in the formation of the peptidyltransferase centre of the ribosome. It belongs to a family of ribosomal proteins which, on the basis of sequence similarities includes bacterial, red algal, cyanelle, mammalian, yeast and Arabidopsis thaliana L3 proteins; archaeal Haloarcula marismortui
HmaL3 (HL1), and yeast mitochondrial YmL9 [,
,
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].Ribosomal protein S12 is one of the proteins from the small ribosomal subunit.
In Escherichia coli, S12 is known to be involved in the translation initiationstep. It is a very basic protein of 120 to 150 amino-acid residues. S12
belongs to a family of ribosomal proteins which are grouped on the basis of sequencesimilarities. This protein is known typically as S12 in bacteria, S23 in eukaryotes and as either S12 or S23 in the Archaea.Bacterial S12 molecules contain a conserved aspartic acid residue which undergoes a novel post-translational modification, beta-methylthiolation, to form the corresponding 3-methylthioaspartic acid.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].A number of eukaryotic and archaeal ribosomal proteins can be grouped on the basis of
sequence similarities. One of these families includes yeast S7 (YS6); archaeal S4e; and mammalian and plant cytoplasmic S4 [
]. Two highly similar isoforms of mammalian S4 exist, one coded by a gene on chromosome Y, and the other on chromosome X. These proteins have
233 to 264 amino acids.
A variety of substrate carrier proteins that are involved in energy transfer are found in the inner mitochondrial membrane [
,
,
,
,
]. Such proteins include: ADP/ATP carrier protein (ADP/ATP translocase); 2-oxoglutarate/malate carrier protein; phosphate carrier protein; tricarboxylate transport protein (or citrate transport protein); Solute carrier family 25 member 16 (also known as Graves disease carrier protein); yeast mitochondrial proteins MRS3 and MRS4; yeast mitochondrial FAD carrier protein; and many others. This family also includes peroxisomal proteins like PMP34 [].Sequence analysis of selected members of the carrier protein family has suggested the presence of six transmembrane (TM) domains, with varying
degrees of sequence conservation and hydrophilicity []. The TM regions, and adjacent hydrophilic loops, are more highly conserved than other regions of the proteins []. All members of the family appear to consist of a tripartite structure, each of the repeated segments being about 100 residues in length []. Each repeat contains two TM domains, the first being more hydrophobic, with conserved glycyl and prolyl residues. Five of the six TM domains are followed by the conserved sequence (D/E)-Hy(K/R), where - denotes any residue and Hy is a hydrophobic position [].
This entry represents a group of plant proteins, including protein SHORT INTERNODES (SHI) and its paralogues from Arabidopsis. In Arabidopsis, the SHI family comprises ten members. They contain a RING finger-like zinc finger motif. SHI may act as a negative regulator of GA responses through transcriptional control binding directly to the 5'-T/GCTCTAC-3' DNA motif found in the promoter regions [
]. In rice, it regulates tillering and panicle branching by modulating SPL14/IPA1 transcriptional activity on the downstream TB1 and DEP1 target genes [].
This entry contains a group of transmemberane proteins, including TMEM64. The yeast member of this family, Tvp38 (
), localises with the t-SNARE Tlg2 [
].
This entry represents the microtubule-associated protein RP/EB (MAPRE) family, including MAPRE1 (EB1), MAPRE2 (RP1, also known as EB2), MAPRE3 (EBF3, also known as EB3) and their homologues from eukaryotes. Despite their high protein sequence conservation, the individual EBs exhibit different regulatory and functional properties [
]. For instance, EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes [].EB1 contains an N-terminal calponin homology (CH) domain that is responsible for the interaction with microtubules (MTs), and a C-terminal coiled coil domain that extends into a four-helix bundle, required for dimer formation [
]. Through their C-terminal sequences, EBs interact with most other known +TIPs (plus end tracking proteins) and recruit many of them to the growing MT ends [,
]. EB1 is involved in MT anchoring at the centrosome and cell migration []. EB2 is highly expressed in pancreatic cancer cells, and seems to be involved in perineural invasion [
]. EB3 is specifically upregulated upon myogenic differentiation. Knockdown of EB3, but not that of EB1, prevents myoblast elongation and fusion into myotubes [
]. This entry also includes bZIP transcription factor hapX from the yeast
Neosartorya fumigata, which is a transcription factor required for repression of genes during iron starvation [
].
This entry represents the filament-like plant proteins. In Arabidopsis thaliana, there are 7 filament-like plant proteins. They are coiled-coil proteins with unknown function [
].
The Rieske subunit can be found in the Ubiquinol-cytochrome c reductase (bc1 complex or complex III) or the cytochrome b6f complex. The Rieske subunit acts by binding either a ubiquinol or plastoquinol anion, transferring
an electron to the 2Fe-2S cluster, then releasing the electron to the cytochrome c or cytochrome f haem iron [
,
]. The 2Fe-2S cluster is bound in the highly conserved C-terminal region of the Rieske subunit.
Ubiquinol-cytochrome c reductase (bc1 complex or complex III) is an enzyme complex of bacterial and mitochondrial oxidative phosphorylation systems. It catalyses the oxidoreduction of the mobile redox components ubiquinol and cytochrome c, generating an electrochemical potential which is linked to ATP synthesis [
,
].The complex consists of three subunits in most bacteria, and nine in mitochondria: both bacterial and mitochondrial complexes contain cytochrome b and cytochrome c1 subunits, and an iron-sulphur `Rieske' subunit, which contains a high potential 2Fe-2S cluster []. The mitochondrial form also includes six other subunits that do not possess redox centres. The plant cytochrome b6f is located in the thylakoid membrane and functions in both linear and cyclic electron transport, providing ATP and NADPH for photosynthetic carbon fixation. The cytochrome b6f complex has eight different subunits, six being encoded in the chloroplast genome (PetA [cyt f], PetB [cyt b6], PetD, PetG, PetL, and PetN) and two in the nucleus (PetC [Rieske FeS] and PetM. The complex functions as a dimer []. In cyanobacteria, the cytochrome b6f complex contains four large subunits, including cytochrome f, cytochrome b6, the Rieske iron-sulfur protein (ISP), and subunit IV; as well as four small hydrophobic subunits, PetG, PetL, PetM, and PetN []. Proteins in this entry also include arsenite oxidase subunit AioB from Alcaligenes faecalis. It is involved in the detoxification of arsenic [
].
The major intrinsic protein (MIP) family is large and diverse, possessing over 100 members that form transmembrane channels. These channel proteins function in water, small carbohydrate (e.g., glycerol), urea, NH3, CO2 and possibly ion transport, by an energy independent mechanism. They are found ubiquitously in bacteria, archaea and eukaryotes.The MIP family contains two major groups of channels: aquaporins and glycerol facilitators. The known aquaporins cluster loosely together as do the known glycerol facilitators. MIP family proteins are believed to form aqueous pores that selectively allow passive transport of their solute(s) across the membrane with minimal apparent recognition. Aquaporins selectively transport water (but not glycerol) while glycerol facilitators selectively transport glycerol but not water. Some aquaporins can transport NH3 and CO2. Glycerol facilitators function as solute nonspecific channels, and may transport glycerol, dihydroxyacetone, propanediol, urea and other small neutral molecules in physiologically important processes. Some members of the family, including the yeast FPS protein and tobacco NtTIPA may transport both water and small solutes. The structures of various members of the MIP family have been determined by means of X-ray diffraction [
,
,
], revealing the fold to comprise a right-handed bundle of 6 transmembrane (TM) α-helices [,
,
]. Similarities in the N-and C-terminal halves of the molecule suggest that the proteins may have arisen through tandem, intragenic duplication of an ancestral protein that contained 3 TM domains [].
This family includes the large subunit ribosomal protein L18 from bacteria, mitochondria and plastids.Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].
This entry represents proteins SOSEKI 1-5 (SOK1-5) from Arabidopsis thaliana. SOSEKI proteins (SOK1-5) integrate apical-basal and radial organismal axes to localize to polar cell edges and contain a DIX oligomerization domain that resembles that in the animal Dishevelled polarity regulator [
,
]. SOK2 is also known as Protein UPSTREAM OF FLC (UFC, At5g10150) and is part of a three-gene cluster containing FLC, UFC and DFC, which is coordinately regulated in response to vernalization [,
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].This entry represents the archaeal ribosomal L23 protein, and some, although not all bacterial L23 proteins.
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [
,
].This entry represents both eukaryotic (yeast) L25 and prokaryotic and eukaryotic L23 proteins, which constitute the uL23 family [
].
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [
,
]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [,
].Ribosomal protein L29 is one of the proteins from the large ribosomal subunit. L29 belongs to a family of ribosomal proteins of 63 to 138 amino-acid residues which, on the basis of sequence similarities, groups:
Red algal L29.Bacterial L29.Mammalian L35Caenorhabditis elegans L35 (ZK652.4).Yeast L35.L29 is located on the surface of the large ribosomal subunit, where it participates in forming a protein ring that surrounds the polypeptide exit channel, providing structural support for the ribosome [
]. L29 is involved in forming the translocon binding site, along with L19, L22, L23, L24, and L31e. In addition, L29 and L23 form the interaction site for trigger factor (TF) on the ribosomal surface, adjacent to the exit tunnel []. L29 forms numerous interactions with L23 and with the 23S rRNA.This family includes eubacterial and archaeal L29 and eukariotic L35 ribosomal proteins, which constitute the uL29 family [
].
Regulated exocytosis of neurotransmitters and hormones, as well as intracellular traffic, requires fusion of two lipid bilayers. SNARE proteins are thought to form a protein bridge, the SNARE complex, between an incoming vesicle and the acceptor compartment. SNARE proteins contribute to the specificity of membrane fusion, implying that the mechanisms by which SNAREs are targeted to subcellular compartments are important for specific docking and fusion of vesicles. This mechanism involves a family of conserved proteins, members of which appear to function at all sites of constitutive and regulated secretion in eukaryotes [
]. Among them are 2 types of cytosolic protein, NSF (N-ethyl-maleimide-sensitive protein) and the SNAPs (alpha-, beta- and gamma-soluble NSF attachment proteins). The yeast vesicular fusion protein, sec17, a cytoplasmic peripheral membrane protein involved in vesicular transport between the endoplasmic reticulum and the golgi apparatus, shows a high degree of sequence similarity to the alpha-SNAP family.
Alpha-SNAP is universally present in eukaryotes and acts as an adaptor protein between SNARE (integral membrane SNAP receptor) and NSF for recruitment to the 20S complex. Beta-SNAP is brain-specific and shares high sequence identity (about 85%) with alpha-SNAP. Gamma-SNAP is weakly related (about 20-25% identity) to the two other isoforms, and is ubiquitous. It may help regulate the activity of the 20S complex. The X-ray structures of vertebrate gamma-SNAP and Sec17 show similar all-helical structures consisting of an N-terminal extended twisted sheet of four tetratricopeptide repeat (TPR)-like helical hairpins and a C-terminal helical bundle [
,
,
,
,
,
,
,
].SNAP-25 and its non-neuronal homologue Syndet/SNAP-23 are synthesized as soluble proteins in the cytosol. Both SNAP-25 and Syndet/SNAP-23 are palmitoylated at cysteine residues clustered in a loop between two N- and C-terminal coils and palmitoylation is essential for membrane binding and plasma membrane targeting. The C-terminal and the N-terminal helices of SNAP-25, are each targeted to the plasma membrane by two distinct cysteine-rich domains and appear to regulate the availability of SNAP to form complexes with SNARE [
].
This eukaryotic family includes a number of plant organ-specific proteins. While their function is unknown, their predicted amino acid sequence suggests that these proteins could be exported and glycosylated [].
This family includes BPS1 (Protein BYPASS 1) from plants, a protein required for normal root and shoot development. It prevents constitutive production of a root mobile carotenoid-derived signalling compound that is capable of arresting shoot and leaf development [
,
].