Protein Domain : ATP synthase, F0 complex, subunit C, DCCD-binding site IPR020537

Type  Binding_site
Description  Transmembrane ATPases are membrane-bound enzyme complexes/ion transporters that use ATP hydrolysis to drive the transport of protons across a membrane. Some transmembrane ATPases also work in reverse, harnessing the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. There are several different types of transmembrane ATPases, which can differ in function (ATP hydrolysis and/or synthesis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [ , ]. The different types include:F-ATPases (ATP synthases, F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts).V-ATPases (V1V0-ATPases), which are primarily found in eukaryotes and they function as proton pumps that acidify intracellular compartments and, in some cases, transport protons across the plasma membrane []. They are also found in bacteria [].A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases, though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases [ , ].P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes.E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.F-ATPases (also known as ATP synthases, F1F0-ATPase, or H(+)-transporting two-sector ATPase) ( ) are composed of two linked complexes: the F1 ATPase complex is the catalytic core and is composed of 5 subunits (alpha, beta, gamma, delta, epsilon), while the F0 ATPase complex is the membrane-embedded proton channel that is composed of at least 3 subunits (A-C), with additional subunits in mitochondria. Both the F1 and F0 complexes are rotary motors that are coupled back-to-back. In the F1 complex, the central gamma subunit forms the rotor inside the cylinder made of the alpha(3)beta(3) subunits, while in the F0 complex, the ring-shaped C subunits forms the rotor. The two rotors rotate in opposite directions, but the F0 rotor is usually stronger, using the force from the proton gradient to push the F1 rotor in reverse in order to drive ATP synthesis [ ]. These ATPases can also work in reverse in bacteria, hydrolysing ATP to create a proton gradient.Subunit C (also called subunit 9, or proteolipid) is found in the F0 complex of F-ATPases. Ten C subunits form an oligomeric ring that makes up the F0 rotor. The flux of protons through the ATPase channel drives the rotation of the C subunit ring, which in turn is coupled to the rotation of the F1 complex gamma subunit rotor due to the permanent binding between the gamma and epsilon subunits of F1 and the C subunit ring of F0. The sequential protonation and deprotonation of Asp61 of subunit C is coupled to the stepwise movement of the rotor [ ]. Structurally, subunit c consists of two long terminal hydrophobic regions, which probably span the membrane, and a central hydrophilic region. N,N'-dicyclohexylcarbodiimide (DCCD) can bind covalently to subunit c and thereby abolish the ATPase activity. DCCD binds to a specific glutamate or aspartate residue which is located in the middle of the second hydrophobic region near the C terminus of the protein. This entry represents the site that includes the DCCD-binding residue.
Short Name  ATP_synth_F0_csu_DDCD_BS

0 Child Features

0 Gene Families

2 Genes

0 Ontology Annotations

0 Parent Features

0 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom