Protein Domain : Signal transduction histidine kinase, NreB IPR017203

Type  Family
Description  Two-component signal transduction systems enable bacteria to sense, respond, and adapt to a wide range of environments, stressors, and growth conditions [ ]. Some bacteria can contain up to as many as 200 two-component systems that need tight regulation to prevent unwanted cross-talk []. These pathways have been adapted to response to a wide variety of stimuli, including nutrients, cellular redox state, changes in osmolarity, quorum signals, antibiotics, and more []. Two-component systems are comprised of a sensor histidine kinase (HK) and its cognate response regulator (RR) []. The HK catalyses its own auto-phosphorylation followed by the transfer of the phosphoryl group to the receiver domain on RR; phosphorylation of the RR usually activates an attached output domain, which can then effect changes in cellular physiology, often by regulating gene expression. Some HK are bifunctional, catalysing both the phosphorylation and dephosphorylation of their cognate RR. The input stimuli can regulate either the kinase or phosphatase activity of the bifunctional HK.This entry represents signal transduction histidine kinases such as NreB. The nreABC (nitrogen regulation) operon encodes a two-component regulatory system that controls dissimilatory nitrate/nitrite reduction in response to oxygen in staphylococci. NreB is a cytosolic protein with four N-terminal cysteine residues, where both the cysteine cluster and iron ions are required for function [ ].
Short Name  Sig_transdc_His_kinase_NreB

0 Child Features

0 Gene Families

0 Genes

6 Ontology Annotations

0 Parent Features

0 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom