Protein Domain : DUS-like, FMN-binding domain IPR035587

Type  Domain
Description  This entry represents a dihydrouridine synthase-like (DUS-like) FMN-binding domain [ ]. Proteins containing this domain catalyse the reduction of the 5,6-double bond of a uridine residue on tRNA. Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, and also in some archaea. Most dihydrouridines are found in the D loop of t-RNAs. The role of dihydrouridine in tRNA is currently unknown, but may increase conformational flexibility of the tRNA. It is likely that different family members have different substrate specificities, which may overlap [, ]. 1VHN, a putative flavin oxidoreductase, has high sequence similarity to DUS. The enzymatic mechanism of 1VHN is not known at the present [].Dihydrouridine synthases (Dus) is a large family of flavoenzymes comprising eight subfamilies. They catalyse the NADPH-dependent synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs. Mainly, they contain two functional conserved domains, an N-terminal catalytic domain (TBD) adopting a TIM barrel fold and a unique C-terminal helical domain (HD) devoted to tRNA recognition. However, DUS2 is distinguished from its paralogues and its fungi orthologues by the acquisition of an additional domain, a double stranded RNA binding domain (dsRBD), which serves as the main tRNA binding module [ , ].
Short Name  DUS-like_FMN-bd

0 Child Features

0 Gene Families

0 Genes

0 Ontology Annotations

0 Parent Features

0 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom