v5.1.0.3
Cicer data from the Legume Information System
Type | Family |
Description | O-Glycosyl hydrolases ( ) are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycosyl hydrolases, based on sequence similarity, has led to the definition of 85 different families [ , ]. This classification is available on the CAZy (CArbohydrate-Active EnZymes) website.Alpha-amylase is classified as family 13 of the glycosyl hydrolases and is present in archaea, bacteria, plants and animals. Alpha-amylase is an essential enzyme in alpha-glucan metabolism, acting to catalyse the hydrolysis of alpha-1,4-glucosidic bonds of glycogen, starch and related polysaccharides. Although all alpha-amylases possess the same catalytic function, they can vary with respect to sequence. In general, they are composed of three domains: a TIM barrel containing the active site residues and chloride ion-binding site (domain A), a long loop region inserted between the third beta strand and the α-helix of domain A that contains calcium-binding site(s) (domain B), and a C-terminal β-sheet domain that appears to show some variability in sequence and length between amylases (domain C) []. Amylases have at least one conserved calcium-binding site, as calcium is essential for the stability of the enzyme. The chloride-binding functions to activate the enzyme, which acts by a two-step mechanism involving a catalytic nucleophile base (usually an Asp) and a catalytic proton donor (usually a Glu) that are responsible for the formation of the beta-linked glycosyl-enzyme intermediate. This entry includes alpha-amylases and related proteins [ , ]. |
Short Name | A-amylase-like |