v5.1.0.3
Cicer data from the Legume Information System
Type | Homologous_superfamily |
Description | NADH:ubiquinone oxidoreductase (complex I) ( ) is a respiratory-chain enzyme that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane (NADH + ubiquinone = NAD+ + ubiquinol) [ ]. Complex I is a major source of reactive oxygen species (ROS) that are predominantly formed by electron transfer from FMNH(2). Complex I is found in bacteria, cyanobacteria (as a NADH-plastoquinone oxidoreductase), archaea [], mitochondria, and in the hydrogenosome, a mitochondria-derived organelle. In general, the bacterial complex consists of 14 different subunits, while the mitochondrial complex contains homologues to these subunits in addition to approximately 31 additional proteins [].This entry represents chain 6 from NADH:ubiquinone oxidoreductase and NADH-plastoquinone oxidoreductase. Bacterial proton-translocating NADH-quinone oxidoreductase (NDH-1) is composed of 14 different subunits. The chain belonging to this family is a subunit that constitutes the membrane sector of the complex. It reduces ubiquinone to ubiquinol utilising NADH. Plant chloroplastic NADH-plastoquinone oxidoreductase reduces plastoquinone to plastoquinol. Mitochondrial NADH-ubiquinone oxidoreductase from a variety of sources reduces ubiquinone to ubiquinol.Subunit NuoJ has an unusual non-globular fold: three linearly arranged amino-terminal TM helices border NuoK, and TMs 4 and 5 are separated at the opposite sides of the domain. Thus, NuoJ interweaves between NuoK, A and N, stabilising the complex. TM3 of NuoJ contains in its middle a pi-bulge/kink, so this helix is probably flexible and mechanistically important. TM3 is the most conserved helix in NuoJ and is a hotspot for human mitochondrial disease mutations [ ]. |
Short Name | Nuo/plastoQ_OxRdtase_6_NuoJ |