Protein Domain : DNA-directed DNA polymerase, family A, conserved site IPR019760

Type  Conserved_site
Description  DNA carries the biological information that instructs cells how to exist in an ordered fashion: accurate replication is thus one of the mostimportant events in the cell life cycle. This function is mediated by DNA-directed DNA-polymerases, which add nucleotide triphosphate (dNTP)residues to the 3'-end of the growing DNA chain, using a complementary DNA as template. Small RNA molecules are generally used as primers for chain elongation, although terminal proteins may also be used. Three motifs, A, B and C [], are seen to be conserved across all DNA-polymerases, with motifs A and C also seen in RNA- polymerases. They are centred on invariant residues, and their structural significance was implied from the Klenow (Escherichia coli) structure: motif A contains a strictly-conserved aspartate at the junction of a β-strand and an α-helix; motif B contains an α-helix with positive charges; and motif C has a doublet of negative charges, located in a β-turn-beta secondary structure [].DNA polymerases ( ) can be classified, on the basis of sequence similarity [, ], into at least four different groups: A, B, C and X. Members of family X are small (about 40kDa) compared with other polymerases and encompass two distinct polymerase enzymes that have similar functionality: vertebrate polymerase beta (same as yeast pol 4), and terminal deoxynucleotidyl-transferase (TdT) (). The former functions in DNA repair, while the latter terminally adds single nucleotides to polydeoxynucleotide chains.Both enzymes catalyse addition of nucleotides in a distributive manner, i.e. they dissociate from the template-primer after addition of each nucleotide.DNA-polymerases show a degree of structural similarity with RNA-polymerases. Five regions of similarity are found in all the polymerases of this entry. The signature of this entry is to the conserved region, known as 'motif B' [ ]; motif B is located in a domain which, in E. coli polA, has been shown to bind deoxynucleotide triphosphate substrates; it contains a conserved tyrosine which has been shown, by photo-affinity labelling, to be in the active site; a conserved lysine, also part of this motif, can be chemically labelled, using pyridoxal phosphate.
Short Name  DNA-dir_DNA_pol_A_CS

0 Child Features

0 Gene Families

0 Genes

2 Ontology Annotations

0 Parent Features

0 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom