Protein Domain : Hepatitis C virus core protein, chain A superfamily IPR044896

Type  Homologous_superfamily
Description  This superfamily represents the N-terminal chain A region of the Hepatitis C virus core protein. The HCV core protein is located at the N terminus of the polyprotein and is followed by the signal sequence located between the core protein and the E1 envelope glycoprotein. This signal sequence targets the nascent HCV polyprotein to the endoplasmic reticulum (ER), allowing the translocation of E1 to the ER lumen. Cleavage by a signal peptidase in the ER lumen releases the N-terminal end of E1, leaving the 191-amino acids (aa) core protein anchored by its C-terminal signal peptide [ , ]. This 191aa polypeptide, also known as p23, is the immature form of the core protein; p23 is further processed by an intramembrane protease, the signal peptide peptidase (SPP), that removes the ER anchor , releasing p21, the N-terminal 179aa mature form of the core protein []. Core protein (p21) is responsible for packaging viral RNA to form a viral nucleocapsid, and it also promotes virion budding []. Two domains have been identified in the mature form of the HCV core protein, based on predicted structural and functional characteristics [ ]. Domain I, corresponding to the N-terminal region of approximately 120 aa, is a highly basic domain that is probably involved in the recruitment ofviral RNA during particle morphogenesis. Domain II, located between aa 120 and aa 175, is a hydrophobic region predicted to form one or two α-helices that are probably involved in the association of core with the ER membrane and lipid droplets.
Short Name  HCV_core_chain_A

0 Child Features

0 Gene Families

0 Genes

0 Ontology Annotations

0 Parent Features

0 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom