v5.1.0.3
Cicer data from the Legume Information System
| Type | Domain |
| Description | Ca2+ ions are unique in that they not only carry charge but they are also the most widely used of diffusible second messengers. Voltage-dependent Ca2+ channels (VDCC) are a family of molecules that allow cells to couple electrical activity to intracellular Ca2+ signalling. The opening and closing of these channels by depolarizing stimuli, such as action potentials, allows Ca2+ ions to enter neurons down a steep electrochemical gradient, producing transient intracellular Ca2+ signals. Many of the processes that occur in neurons, including transmitter release, gene transcription and metabolism are controlled by Ca2+ influx occurring simultaneously at different cellular locales. The pore is formed by the alpha-1 subunit which incorporates the conduction pore, the voltage sensor and gating apparatus, and the known sites of channel regulation by second messengers, drugs, and toxins [ ]. The activity of this pore is modulated by four tightly-coupled subunits: an intracellular beta subunit; a transmembrane gamma subunit; and a disulphide-linked complex of alpha-2 and delta subunits, which are proteolytically cleaved from the same gene product. Properties of the protein including gating voltage-dependence, G protein modulation and kinase susceptibility can be influenced by these subunits.Voltage-gated calcium channels are classified as T, L, N, P, Q and R, and are distinguished by their sensitivity to pharmacological blocks, single-channel conductance kinetics, and voltage-dependence. On the basis of their voltage activation properties, the voltage-gated calcium classes can be further divided into two broad groups: the low (T-type) and high (L, N, P, Q and R-type) threshold-activated channels.The beta subunit is a soluble and intracellular protein that interacts with the transmembrane alpha1 subunit. It facilitates the trafficking and proper localization of the alpha1 subunit to the cellular plasma membrane. Vertebrates contain four different beta subunits from distinct genes (beta1-4); each exists as multiple splice variants [ ]. All are expressed in the brain while other tissues show more specific expression patterns. The beta subunits show similarity to MAGUK (membrane-associated guanylate kinase) proteins in that they contain SH3 and inactive guanylate kinase (GuK) domains; however, they do not appear to contain a PDZ domain []. This entry represents the SH3 domain of the beta2 subunit, which is expressed in the heart [ ] and is present in specific neuronal cells including cerebellar Purkinje cells, hippocampal pyramidal neurons [], and photoreceptors []. Knockout of the beta2 gene in mice results in embryonic lethality, demonstrating its importance in development [, ]. |
| Short Name | CACNB2_SH3 |