Protein Domain : Adenylate cyclase G-alpha binding IPR013716

Type  Domain
Description  Adenylate cyclase catalyses the conversion of ATP to 3',5'-cyclic AMP (cAMP) and pyrophosphate. It plays an essential role in the regulation of cellular metabolism by catalysing the synthesis of a second messenger, cAMP. G protein-mediated signalling is implicated in yeast and fungal cAMP pathways. The cAMP-PKA pathway consists of an extracellular ligand-sensitive G protein-coupled receptor, a G protein signal transmitter, and the effector adenylate cyclase. The product of adenylate cyclase, cAMP, acts as an intracellular second messenger [ ].GTP-bound RAS2 is required to elicit magnesium-dependent adenylyl cyclase activity in Saccharomyces cerevisiae. In Schizosaccharomyces pombe, however, the cyclase is probably not regulated by RAS proteins, but is activated by git1.In S. pombe, Gpa2 Galpha binds an N-terminal domain of adenylate cyclase, comprising a moderately conserved sequence, which is within a region that is poorly related to other fungal adenylate cyclases. Adenylate cyclase is directly activated by a fungal G protein, which suggests a distinct activation mechanism from that of mammals [].This fungal domain interacts with the alpha subunit of heterotrimeric G proteins [ ].
Short Name  Adenylate_cyclase_G-a-bd

0 Child Features

0 Gene Families

0 Genes

3 Ontology Annotations

0 Parent Features

0 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom