Protein Domain : Glutamyl-tRNA synthetase, archaeal/eukaryotic cytosolic IPR004526

Type  Family
Description  This entry are mostly eukaryotic cytosolic and archaeal forms of the glutamyl-tRNA synthetase. The glutamyl-tRNA synthetases of the eukaryotic cytosol and of the Archaea are more similar to glutaminyl-tRNA synthetases than to bacterial glutamyl-tRNA synthetases. In many species, the charging of tRNA (gln) proceeds first through misacylation with Glu and then transamidation. For this reason, glutamyl-tRNA synthetases, including all known archaeal enzymes may act on both tRNA (gln) and tRNA (glu).Glutamate-tRNA ligase (also known as glutamyl-tRNA synthetase; ) is a class Ic ligase and shows several similarities with glutamate-tRNA ligase concerning structure and catalytic properties. It is an alpha2 dimer. To date one crystal structure of a glutamate-tRNA ligase (Thermus thermophilus) has been solved. The molecule has the form of a bent cylinder and consists of four domains. The N-terminal half (domains 1 and 2) contains the 'Rossman fold' typical for class I ligases and resembles the corresponding part of Escherichia coli GlnRS, whereas the C-terminal half exhibits a GluRS-specific structure [ ].The aminoacyl-tRNA synthetases (also known as aminoacyl-tRNA ligases) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction [ , ]. These proteins differ widely in size and oligomeric state, and have limited sequence homology []. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossman fold catalytic domain and are mostly monomeric []. Class II aminoacyl-tRNA synthetases share an anti-parallel β-sheet fold flanked by α-helices [], and are mostly dimeric or multimeric, containing at least three conserved regions [, , ]. However, tRNA binding involves an α-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan, valine, and some lysine synthetases (non-eukaryotic group) belong to class I synthetases. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, phenylalanine, proline, serine, threonine, and some lysine synthetases (non-archaeal group), belong to class-II synthetases. Based on their mode of binding to the tRNA acceptor stem, both classes of tRNA synthetases have been subdivided into three subclasses, designated 1a, 1b, 1c and 2a, 2b, 2c [].
Short Name  Glu-tRNA-synth_arc/euk

0 Child Features

0 Gene Families

13 Genes

5 Ontology Annotations

1 Parent Features

3 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom