Protein Domain : Threonine-tRNA ligase, class IIa IPR002320

Type  Family
Description  Threonine-tRNA ligase (also known as Threonyl-tRNA synthetase) ( ) exists as a monomer and belongs to class IIa. The enzyme from Escherichia coli represses the translation of its own mRNA. The crystal structure of the complex between tRNA(Thr) and ThrRS show structural features that reveal novel strategies for providing specificity in tRNA selection. These include an amino-terminal domain containing a novel protein fold that makes minor groove contacts with the tRNA acceptor stem. The enzyme induces a large deformation of the anticodon loop, resulting in an interaction between two adjacent anticodon bases, which accounts for their prominent role in tRNA identity and translational regulation. A zinc ion found in the active site is implicated in amino acid recognition/discrimination []. The zinc ion may act to ensure that only amino acids that possess a hydroxyl group attached to the β-position are activated [].The aminoacyl-tRNA synthetases (also known as aminoacyl-tRNA ligases) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction [, ]. These proteins differ widely in size and oligomeric state, and have limited sequence homology []. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossman fold catalytic domain and are mostly monomeric []. Class II aminoacyl-tRNA synthetases share an anti-parallel β-sheet fold flanked by α-helices [], and are mostly dimeric or multimeric, containing at least three conserved regions [, , ]. However, tRNA binding involves an α-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan, valine, and some lysine synthetases (non-eukaryotic group) belong to class I synthetases. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, phenylalanine, proline, serine, threonine, and some lysine synthetases (non-archaeal group), belong to class-II synthetases. Based on their mode of binding to the tRNA acceptor stem, both classes of tRNA synthetases have been subdivided into three subclasses, designated 1a, 1b, 1c and 2a, 2b, 2c [].
Short Name  Thr-tRNA-ligase_IIa

0 Child Features

2 Gene Families

221 Genes

4 Ontology Annotations

0 Parent Features

14 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom