Protein Domain : Histone-lysine N-methyltransferase, SET2, plant IPR025787

Type  Family
Description  ASHR3 protein, a member of this family, interacts with the putative basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS), which is involved in anther and stamen development in Arabidopsis. This interaction is mediated by the PHD finger and the SET domain of ASHR3 [ ].Methyltransferases (EC [intenz:2.1.1.-]) constitute an important class of enzymes present in every life form. They transfer a methyl group most frequently from S-adenosyl L-methionine (SAM or AdoMet) to a nucleophilic acceptor such as oxygen leading to S-adenosyl-L-homocysteine (AdoHcy) and a methylated molecule [, , ]. All these enzymes have in common a conserved region of about 130 amino acid residues that allow them to bind SAM []. The substrates that are methylated by these enzymes cover virtually every kind of biomolecules ranging from small molecules, to lipids, proteins and nucleic acids [, , ]. Methyltransferase are therefore involved in many essential cellular processes including biosynthesis, signal transduction, protein repair, chromatin regulation and gene silencing [, , ]. More than 230 families of methyltransferases have been described so far, of which more than 220 use SAM as the methyl donor.
Short Name  Hist-Lys_N-MeTrfase_SET2_plant

0 Child Features

2 Gene Families

153 Genes

0 Ontology Annotations

0 Parent Features

14 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom