Protein Domain : Vacuolar protein sorting-associated protein 13-like, N-terminal domain IPR026854

Type  Domain
Description  This is the N-terminal chorein domain of VPS13 and ATG2 proteins, which is highly conserved. ATG2 proteins are involved in autophagosome assembly, playing a key role in nonvesicular lipid transfer [ , , , ]. This domain has a scoop or taco shape whose concave surface is lined by hydrophobic residues which bind glycerophospholipids. This entry also includes human Bridge-like lipid transfer protein family member 3B (also known as UHRF1BP1L and SHIP164), which shares shares structural and lipid transfer properties with these proteins [, ].VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [ , , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ]. Members of this entry belong to the repeating β-groove (RBG) superfamily. These proteins share a structure made of multiple repeating modules consisting of five β-sheets followed by a loop [].
Short Name  VPS13-like_N

0 Child Features

5 Gene Families

412 Genes

0 Ontology Annotations

0 Parent Features

14 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom