Protein Domain : Ribonuclease H domain IPR002156

Type  Domain
Description  This entry represents the RNase H type-I domain. Ribonuclease H (RNase H) ( ) is a member of the ribonuclease family, which recognises and cleaves the RNA strand of RNA-DNA heteroduplexes. The enzyme is widely present in all three kingdoms of living organisms, including bacteria, archaea, and eukaryotes, and their counterpart domains are also found in reverse transcriptases (RTs) from retroviruses and retroelements [ ]. RNases H are classified into two evolutionarily unrelated families, type-I and type-II RNase H, with common structural features of the catalytic domain but different range of substrates for enzymatic cleavage. There appears to be three evolutionarily distinct lineages of cellular Rnase H enzymes []. Type-I or RNase HI domains have been found in all Eukarya, one Archaea, many Eubacteria, a few non-LTR retroposons and all LTR retrotransposons. Type II enzymes consist of RNase HII (rnhB) and HIII (rnhC), which are homologous enzymes. RNase HII can be found in Archaea, Eubacteria and all Eukarya, while RNase HIII appears only in some Eubacteria. In eukaryotes and all Archaea, RNase HII enzymes may constitute the bulk of all Rnase H activity, while the reverse is true in Eubacteria like E. coli where RNase HI is the major source of RNH activity [, , ]. All LTR retrotransposons acquired an enzymatically weak RNase H domain that is missing an important catalytic residue found in all other RNase H enzymes. Vertebrate retroviruses appear to have reacquired their RNase H domains, which are catalytically more active, but their ancestral RNase H domains (found in other LTR retrotransposons) have degenerated to give rise to the tether domain unique to vertebrate retrovirus []. Reverse transcriptase (RT) is a modular enzyme carrying polymerase and ribonuclease H (RNase H) activities in separable domains. Retroviral RNase H is synthesised as part of the POL polyprotein that contains an aspartyl protease, a reverse transcriptase, RNase H and integrase. POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. RNAse H activity requires the presence of divalent cations (Mg2+ or Mn2+) that bind its active site. The main element of the RNase H-like catalytic core is a β-sheet comprising five β-strands, ordered 3-2-1-4-5, where the β-strand 2 is antiparallel to the other β-strands. On both sides the central β-sheet is flanked by α-helices, the number of which differs between related enzymes. The catalytic residues for RNase H enzymatic activity (three aspartic acid and one glutamic acid residue) are invariant across all RNase H domains [, , , , , , ].
Short Name  RNaseH_domain

1 Child Features

0 Gene Families

1000 Genes

2 Ontology Annotations

0 Parent Features

13 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom