Protein Domain : Adenylosuccinate synthase, GTP-binding site IPR018220

Type  Binding_site
Description  Adenylosuccinate synthetase ( ) plays an important role in purine biosynthesis, by catalysing the GTP-dependent conversion of IMP and aspartic acid to AMP. Adenylosuccinate synthetase has been characterised from various sources ranging from Escherichia coli (gene purA) to vertebrate tissues. In vertebrates, two isozymes are present: one involved in purine biosynthesis and the other in the purine nucleotide cycle. The crystal structure of adenylosuccinate synthetase from E. coli reveals that the dominant structural element of each monomer of the homodimer is a central β-sheet of 10 strands. The first nine strands of the sheet are mutually parallel with right-handed crossover connections between the strands. The 10th strand is antiparallel with respect to the first nine strands. In addition, the enzyme has two antiparallel β-sheets, comprised of two strands and three strands each, 11 α-helices and two short 3/10-helices. Further, it has been suggested that the similarities in the GTP-binding domains of the synthetase and the p21ras protein are an example of convergent evolution of two distinct families of GTP-binding proteins [ ]. Structures of adenylosuccinate synthetase from Triticum aestivum and Arabidopsis thaliana when compared with the known structures from E. coli reveals that the overall fold is very similar to that of the E. coli protein [].This entry represents the conserved octapeptide located in the N-terminal section that is involved in GTP-binding [ ].
Short Name  Adenylosuccin_syn_GTP-bd

0 Child Features

0 Gene Families

112 Genes

1 Ontology Annotations

0 Parent Features

12 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom