Protein Domain : Phenylalanine ammonia-lyase IPR005922

Type  Family
Description  The ubiquitous higher plant enzyme phenylalanine ammonia-lyase (PAL; ) is a key biosynthetic catalyst in phenylpropanoid assembly. PAL catalyses the non-oxidative deamination of L-phenylalanine to trans-cinnamic acid. PAL contains a catalytic Ala-Ser-Gly triad that is post-translationally cyclised. PAL is structurally similar to the mechanistically related histidine ammonia lyase (HAL; ), with PAL having an additional approximately 160 residues extending from the common fold [ ]. Catalysis in PAL may be governed by the dipole moments of seven α-helices associated with the PAL active site. The cofactor 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) resides atop the positive poles of three helices, for increasing its electrophillicity. Plant and fungal PAL enzymes contain aa approximately 100-residue long C-terminal multi-helix domain, which might play a role in the rapid response of PAL in the regulation of phenylpropanoid biosynthesis by destabilising the enzyme []. This entry also includes fungal proteins such as Phenylalanine ammonia-lyase CLZ10 which mediates the biosynthesis of squalestatin S1 with potent cholesterol lowering activity by targeting squalene synthase (SS) [], and Phenylalanine ammonia-lyase hkm12 involved in the biosynthesis of hancockiamides, an unusual new family of N-cinnamoylated piperazines [].
Short Name  Phe_NH3-lyase

1 Child Features

0 Gene Families

420 Genes

3 Ontology Annotations

1 Parent Features

13 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom