Protein Domain : H/ACA ribonucleoprotein complex, subunit Nhp2-like IPR002415

Type  Family
Description  H/ACA ribonucleoprotein particles (RNPs) are a family of RNA pseudouridine synthases that specify modification sites through guide RNAs. The function of these H/ACA RNPs is essential for biogenesis of the ribosome, splicing of precursor mRNAs (pre-mRNAs), maintenance of telomeres and probably for additional cellular processes [ ]. All H/ACA RNPs contain a specific RNA component (snoRNA or scaRNA) and at least four proteins common to all such particles: Cbf5, Gar1, Nhp2 and Nop10. These proteins are highly conserved from yeast to mammals and homologues are also present in archaea []. The H/ACA protein complex contains a stable core composed of Cbf5 and Nop10, to which Gar1 and Nhp2 subsequently bind [].This entry represents H/ACA ribonucleoprotein complex subunit NHP2 and similar proteins from eukaryotes, including NHP2-like protein 1 from mammals (SNU13 homologue) and 13 kDa ribonucleoprotein-associated protein (SNU13) from yeast.Nhp2 is part of a complex which catalyses pseudouridylation of rRNA and is required for rRNA biogenesis. This involves the isomerisation of uridine such that the ribose is subsequently attached to C5, instead of the normal N1. Pseudouridine ("psi") residues may serve to stabilise the conformation of rRNAs. Nph2 associates non-specifically with RNA secondary structures instead of directly binding to an specific RNA motif. This protein seem to have evolved from the archaeal ribosomal L7Ae protein family [ ]. Human SNU13 homologue is involved in pre-mRNA splicing as component of the spliceosome [ ]. The protein undergoes a conformational change upon RNA-binding [].SNU13 from Saccharomyces cerevisiae (Baker's yeast) is also a component of the spliceosome and rRNA processing machinery, required for splicing of pre-mRNA and essential for the accumulation and stability of U4 snRNA, U6 snRNA, and box C/D snoRNAs [ , , ].
Short Name  H/ACA_rnp_Nhp2-like

0 Child Features

0 Gene Families

409 Genes

2 Ontology Annotations

1 Parent Features

13 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom