Protein Domain : Histidinol dehydrogenase, conserved site IPR001692

Type  Conserved_site
Description  Histidinol dehydrogenase ( ) (HDH) catalyses the terminal step in the biosynthesis of histidine in bacteria, fungi, and plants, the four-electron oxidation of L-histidinol to histidine. In 4-electron dehydrogenases, a single active site catalyses 2 separate oxidation steps: oxidation of the substrate alcohol to an intermediate aldehyde; and oxidation of the aldehyde to the product acid, in this case His [ ]. The reaction proceeds via a tightly- or covalently-bound inter-mediate, and requires the presence of 2 NAD molecules []. By contrast with most dehydrogenases, the substrate is bound before the NAD coenzyme []. A Cys residue has been implicated in the catalytic mechanism of the second oxidative step [].In bacteria HDH is a single chain polypeptide; in fungi it is the C-terminal domain of a multifunctional enzyme which catalyzes three different steps of histidine biosynthesis; and in plants it is expressed as nuclear encoded protein precursor which is exported to the chloroplast [ ].
Short Name  Histidinol_DH_CS

0 Child Features

0 Gene Families

152 Genes

1 Ontology Annotations

0 Parent Features

13 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom