Protein Domain : Mur ligase, C-terminal IPR004101

Type  Domain
Description  The bacterial cell wall provides strength and rigidity to counteract internal osmotic pressure, and protection against the environment. The peptidoglycan layer gives the cell wall its strength, and helps maintain the overall shape of the cell. The basic peptidoglycan structure of both Gram-positive and Gram-negative bacteria is comprised of a sheet of glycan chains connected by short cross-linking polypeptides. Biosynthesis of peptidoglycan is a multi-step (11-12 steps) process comprising three main stages:(1) formation of UDP-N-acetylmuramic acid (UDPMurNAc) from N-acetylglucosamine (GlcNAc).(2) addition of a short polypeptide chain to the UDPMurNAc.(3) addition of a second GlcNAc to the disaccharide-pentapeptide building block and transport of this unit through the cytoplasmic membrane and incorporation into the growing peptidoglycan layer.Stage two involves four key Mur ligase enzymes: MurC ( ) [ ], MurD () [ ], MurE () [ ] and MurF () [ ]. These four Mur ligases are responsible for the successive additions of L-alanine, D-glutamate, meso-diaminopimelate or L-lysine, and D-alanyl-D-alanine to UDP-N-acetylmuramic acid []. All four Mur ligases are topologically similar to one another, even though they display low sequence identity. They are each composed of three domains: an N-terminal Rossmann-fold domain responsible for binding the UDPMurNAc substrate; a central domain (similar to ATP-binding domains of several ATPases and GTPases); and a C-terminal domain (similar to dihydrofolate reductase fold) that binds the incoming amino acid []. Residues found in the three domains (the Asp50, Lys130 (GKT motif), and Glu174 residues, MurC numbering) are involved in the catalytic process []. The conserved sequence motifs found in the four Mur enzymes also map to other members of the Mur ligase family, including folylpolyglutamate synthetase, cyanophycin synthetase and the capB enzyme from Bacillales []. This entry represents the C-terminal domain from all four stage 2 Mur enzymes: UDP-N-acetylmuramate-L-alanine ligase (MurC), UDP-N-acetylmuramoylalanine-D-glutamate ligase (MurD), UDP-N-acetylmuramoylalanyl-D-glutamate-2,6-diaminopimelate ligase (MurE), and UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase (MurF). This entry also includes the C-terminal domain of folylpolyglutamate synthase that transfers glutamate to folylpolyglutamate and cyanophycin synthetase that catalyses the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin) [].The C-terminal domain is almost always associated with the cytoplasmic peptidoglycan synthetases, N-terminal domain (see ).
Short Name  Mur_ligase_C

0 Child Features

0 Gene Families

465 Genes

2 Ontology Annotations

0 Parent Features

13 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom