Protein Domain : ATP-citrate lyase/succinyl-CoA ligase, active site IPR017440

Type  Active_site
Description  There are four different enzymes that share a similar catalytic mechanism which involves the phosphorylation by ATP (or GTP) of a specific histidine residue in the active site. These enzymes are: ATP citrate-lyase ( ) [ ], the primary enzyme responsible for the synthesis of cytosolic acetyl-CoA in many tissues, catalyzes the formation of acetyl-CoA and oxaloacetate from citrate and CoA with the concomitant hydrolysis of ATP to ADP and phosphate. ATP-citrate lyase is a tetramer of identical subunits; Succinyl-CoA ligase (GDP-forming) () [ ] is a mitochondrial enzyme that catalyzes the substrate level phosphorylation step of the tricarboxylic acid cycle: the formation of succinyl-CoA from succinate with a concomitant hydrolysis of GTP to GDP and phosphate. This enzyme is a dimer composed of an alpha and a beta subunits; Succinyl-CoA ligase (ADP-forming) () [ ] is a bacterial enzyme that during aerobic metabolism functions in the citric acid cycle, coupling the hydrolysis of succinyl-CoA to the synthesis of ATP. It can also function in the other direction for anabolic purposes. This enzyme is a tetramer composed of two alpha and two beta subunits; and Malate-CoA ligase () (malyl-CoA synthetase) [ ], is a bacterial enzyme that forms malyl-CoA from malate and CoA with the concomitant hydrolysis of ATP to ADP and phosphate. Malate-CoA ligase is composed of two different subunits.This pattern, which is located some 50 residues to the C-terminal of , includes the active site phosphorylated histidine residue.
Short Name  Cit_synth/succinyl-CoA_lig_AS

0 Child Features

0 Gene Families

307 Genes

0 Ontology Annotations

0 Parent Features

13 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom