Protein Domain : Protein-tyrosine phosphatase, low molecular weight IPR017867

Type  Family
Description  Protein tyrosine (pTyr) phosphorylation is a common post-translational modification which can create novel recognition motifs for protein interactions and cellular localisation, affect protein stability, and regulate enzyme activity. Consequently, maintaining an appropriate level of protein tyrosine phosphorylation is essential for many cellular functions. Tyrosine-specific protein phosphatases (PTPase; ) catalyse the removal of a phosphate group attached to a tyrosine residue, using a cysteinyl-phosphate enzyme intermediate. These enzymes are key regulatory components in signal transduction pathways (such as the MAP kinase pathway) and cell cycle control, and are important in the control of cell growth, proliferation, differentiation and transformation [, ]. The PTP superfamily can be divided into four subfamilies []:(1) pTyr-specific phosphatases(2) dual specificity phosphatases (dTyr and dSer/dThr)(3) Cdc25 phosphatases (dTyr and/or dThr)(4) LMW (low molecular weight) phosphatasesBased on their cellular localisation, PTPases are also classified as:Receptor-like, which are transmembrane receptors that contain PTPase domains [ ] Non-receptor (intracellular) PTPases [ ] All PTPases carry the highly conserved active site motif C(X)5R (PTP signature motif), employ a common catalytic mechanism, and share a similar core structure made of a central parallel β-sheet with flanking α-helices containing a β-loop-α-loop that encompasses the PTP signature motif [ ]. Functional diversity between PTPases is endowed by regulatory domains and subunits. This entry represents the low molecular weight (LMW) protein-tyrosine phosphatases (or acid phosphatase), which act on tyrosine phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates [ , ]. The structure of a LMW PTPase has been solved by X-ray crystallography [] and is found to form a single structural domain. It belongs to the alpha/beta class, with 6 α-helices and 4 β-strands forming a 3-layer α-β-alpha sandwich architecture.
Short Name  Tyr_phospatase_low_mol_wt

1 Child Features

2 Gene Families

216 Genes

2 Ontology Annotations

0 Parent Features

14 Publications

USDA
InterMine logo
The Legume Information System (LIS) is a research project of the USDA-ARS:Corn Insects and Crop Genetics Research in Ames, IA.
LegumeMine || ArachisMine | CicerMine | GlycineMine | LensMine | LupinusMine | PhaseolusMine | VignaMine | MedicagoMine
InterMine © 2002 - 2022 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom